Back to all models

gemini-embedding-exp-03-07

Google · Gemini Embedding

experimental
Flagship
Latest in family

Key Metrics

Input Limit

8.2K tokens

Output Limit

N/A tokens

Input Cost

$0.10/1M

Output Cost

N/A/1M

Sample API Code

import google.generativeai as genai

# Configure the API key
genai.configure(api_key="YOUR_API_KEY")

# Set up the model
model = genai.GenerativeModel('gemini-embedding-exp-03-07')

# Generate embeddings
response = model.embed_content("Explain the difference between transformers and RNNs in deep learning.")

print(response.embedding)

Required Libraries

google-generativeai
@google/generative-ai

Notes

Achieves state-of-the-art performance across many key dimensions including code, multi-lingual, and retrieval. Supports elastic dimension sizes: 3072, 1536, or 768.

Capabilities

Text embeddings

Supported Data Types

Input Types

text

Output Types

embeddings

Strengths & Weaknesses

Exceptional at

Text embeddings
Code understanding
Multilingual speech recognition

Good at

Search

Additional Information

Latest Update

Mar 7, 2024

Knowledge Cutoff